انرژی خورشیدی

مولد یا باتری خورشیدی (solar photovoltaic power plant) وسیله‌ای است که انرژی تابش خورشید را به انرژی الکتریکی تبدیل می‌کند که ممکن است برای تبدیل نوع جریان از DC به AC نیازمند مبدل نیز باشد. این نوع مولدها از ماشین‌های دوار برای تولید انرژی الکتریکی استفاده نمی‌کنند. از انرژی خورشیدی به روش دیگری نیز برای تولید انرژی الکتریکی استفاده می‌شود.





برعکس باتری‌های خورشیدی که انرژی تابشی را مستقیماً به انرژی الکتریکی تبدیل می‌کنند در صفحات گرمایی متمرکزکننده از انرژی تابشی برای گرم کردن آب و به حرکت درآوردن یک توربین استفاده می‌شود. در این روش از صفحات مخروطی شکل استفاده می‌شود این صفحات مخروطی نور را به سمت یک لوله محتوی یک سیال مثل روغن هدایت می‌کنند و در نهایت از روغن گرم شده برای گرم کردن آب و چرخاندن توربین استفاده می‌شود. یک نیروگاه از این نوع با گِردآورهای سهموی خطی در نزدیکی شیراز در حال ساخت می‌باشد.البته برای تولید انرژی الکتریکی از تابش خورشید روش دیگری نیز وجود دارد، در این روش با تاباندن نور به کف یک حوضچه و گرم کردن آب کف حوضچه و با استفاده از اختلاف دمای آب، انرژی الکتریکی تولید می‌شود. البته تعداد نیروگاه‌های ساخته شده به این روش بسیار کم است.






انرژی باد
توربین‌های بادی در مناطقی که دارای پتانسیل بادی مناسبی می‌باشند مورد استفاده قرار می‌گیرند. در گذشته برای این نوع توربین‌ها طراحی‌های زیادی وجود داشت اما امروزه تقریباً تمام توربین‌های ساخته شده از نوع هلندی سه‌پره هستند.در توربین‌های بزرگ امروزی پره‌ها کوچک‌تر هستند و آرام تر می‌چرخند که این باعث ایجاد ایمنی بیشتر برای پرندگان و ایجاد زیبایی دیداری بیشتر می‌شود. بااین حال هنوز هم در برخی استفاده‌های ویژه از توربین‌های قدیمی استفاده می‌شود. با پیشرفت علم طراحی این توربین‌ها به نحوی انجام می‌پذیرد که بتوان از آن‌ها در مقیاس‌های کوجک و در مناطق با پتانسیل کم انرژی بادی برای کاربردهای خانگی هم بهره جست و برق تولیدی از این روش را بتوان بعنوان کمکی هر چند کوچک در کاهش میزان تقاضای انرژی دانست و این امر باعث می‌شود تا مصرف‌کننده‌های قبلی انرژی حال به‌عنوان یک تولیدکننده توان مطرح شوند.





نیروگاه حرارتی

نیروگاه گرمایی نوعی از نیروگاه است که معمولاً از بخار به عنوان سیال و عامل محرک استفاده می‌کند. آب پس از گرم شدن به سمت توربین بخار که به یک ژنراتور متصل شده می‌رود و با استفاده از انرژی جنبشی خود آن را به حرکت در می‌آورد. پس از عبور بخار از توربین، بخار در کندانسور فشرده می‌شود. بزرگترین اختلاف در طراحی نیروگاه‌های گرمایی نیز به نوع سوخت مصرفی در نیروگاه مربوط است. تقریباً تمامی نیروگاه‌هایی که با استفاده از زغال سنگ، انرژی هسته‌ای، انرژی زمین‌گرمایی یا انرژی گرمایی خورشید کار می‌کنند نیروگاه حرارتی محسوب می‌شوند. گاز طبیعی نیز برخی اوقات در بویلرها یا توربین‌های گازی مورد استفاده قرار می‌گیرد. از مشکلات نیروگاه‌های حرارتی می‌توان به تولید کربن دی اکسید اشاره کرد.

این نیروگاه‌ها معمولاً در اندازه‌های بزرگ و برای استفاده مداوم ساخته می‌شوند.






تاریخچه

تا قرن ۱۸ میلادی از موتورهای بخار که توسط ادیسون اختراع شده بود برای کاربردهای صنعتی استفاده می‌شد. اولین نیروگاه‌های بزرگ تولید برق در نیویورک و لندن نیز از موتورهای بخار استفاده می‌کردند. زمانی که اندازهٔ ژنراتورها رفته‌رفته بزرگ شد، استفاده از توربین‌های بخار به دلیل بهره‌وری بالا و قیمت ساخت پایین‌ترشان گسترش یافت. پس از دههٔ ۱۹۲۰ تمامی نیروگاه‌های نسبتاً بزرگ با توان تولیدی حدود چند کیلووات نیز از توربین‌های بخار استفاده می‌کردند.






بهره‌وری

بهره‌وری الکتریکی یک نیروگاه حرارتی مرسوم با استفاده از نسبت برق تحویلی به شین‌های اصلی و حرارت تولیدی در کوره به دست می‌آید و معمولاً بین ۳۳ تا ۴۸ درصد است. میزان بهره‌وری نیروگاه‌های حرارتی نیز مانند تمامی موتورهای گرمایی محدود به قانون ترمودینامیک (چرخه کارنو) است و بنابراین بقیهٔ انرژی به صورت گرما از نیروگاه خارج می‌شود. این گرمای اضافی را معمولاً با استفاده از آب یا برج‌های خنک‌کننده از نیروگاه خارج می‌کنند. اگر از این گرما برای کاربردهای دیگر مانند گرمایش محیط یا... استفاده شود به این چرخه، «چرخه ترکیبی» می‌گویند. یکی از کاربردهای اصلی این گرما در تاسیسات نمک‌زدایی است که بیشتر در کشورهای کویری که دارای منابع گاز طبیعی هستند مورد استفاده قرار می‌گیرد و به این ترتیب آب شیرین و الکتریسیته با هم در چرخه‌هایی وابسته ایجاد می‌شوند.

با این که بهره‌وری این نیروگاه‌ها از نظر قوانین ترمودینامیک محدود است اما با افزایش حرارت و به مثابه آن افزایش فشار بخار می‌توان کارایی این نیروگاه‌ها را افزایش داد. در گذشته استفاده از جیوه به عنوان سیال در تحقیقات آزمایشگاهی نشان داده که این فلز می‌تواند فشار بیشتری را در حرارتی کمتر نسبت به آب ایجاد کند اما خطر غیرقابل چشم‌پوشی سمی بودن این فلز و امکان نشت آن استفاده از این عنصر را به عنوان سیال منتفی کرد.






هزینه‌ها

هزینه تولید انرژی الکتریکی در یک نیروگاه حرارتی مستقیم به هزینه سوخت آن بر می‌گردد. هم چنین عواملی مانند اپراتور کار، نگهداری، دسترسی و مکان نیروگاه بر می‌توانند بر هزینه نیروگاه تاثیر بگذارند.






کوره بویلر و سیلندر بخار

تا زمانی که آب داخل بویلر قرار دارد عملیات مربوط به اضافه کردن گرمای بخار به آن صورت می‌گیرد. بویلر با استفاده از واکنش شیمیایی ناشی از سوختن سوخت‌ها، گرمایی تولیدی را به آب انتقال می‌دهد. آب قبل از وارد شدن به بویلر باید از قسمتی که به آن گرم‌کن مقدماتی می‌گویند بگذرد تا به این ترتیب بهره‌وری بویلر بالا رود.






آماده‌سازی سوخت

در نیروگاه‌های گرمایی که از زغال‌سنگ استفاده می‌کنند، پس از حمل زغال سنگ، آن را به وسیله آسیاب‌های مخصوص خرد کرده و سپس به محفظه سوخت بویلر انتقال می‌دهند. زغال‌سنگ مصرفی باید تا درجهٔ معینی خرد شده باشد تا آماده مصرف در بویلر شود.

برخی از نیروگاه‌ها از نفت به عنوان سوخت و به جای زغال‌سنگ استفاده می‌کنند. این نفت در طول حمل و نقل و در طول مدت ذخیره شدن باید گرم (گرم‌تر از نقطه ریزش) نگه‌داشته شود تا بتوان آن را به راحتی به اتاق احتراق پمپ کرد.

بویلرها در برخی از نیروگاه‌ها از گاز طبیعی به عنوان سوخت اصلی استفاده می‌کنند. از این سوخت در برخی از نیروگاه‌ها به عنوان سوخت کمکی نیز استفاده می‌شود و در صورتی که در روند تهیه سوخت اصلی (نفت یا زغال‌سنگ) اختلالی ایجاد شود به وسیله این سوخت از متوقف شدن عملکرد نیروگاه جلوگیری می‌کنند.






سیستم سوزاندن سوخت

زمانی‌که زغال پودر شده برای سوزاندن آماده شد از طریق یک مجرای خاص با فشار وارد کوره می‌شود. زاویه و نوع حرکت پودر طوری است که به راحتی با هوای وارد شده به کوره مخلوط شود و موجب تسهیل در سوختن سوخت شود. هوای وارد شده به کوره قبل از وارد شدن به کوره گرم می‌شود و به این ترتیب بهره‌وری کوره بالا خواهد رفت.

برای رساندن دمای کوره به دمای مناسب برای سوزاندن سوخت باید قبل از وارد کردن سوخت دمای کوره را به وسیله یک سوخت دیگر مانند نفت یا گاز طبیعی به دمای مناسب رساند.






مسیر هوا

برای تامین هوای لازم در روند سوزاندن سوخت از فن‌های خارجی خاصی استفاده می‌شود. این فن‌ها ابتدا هوا را از جو دریافت کرده و پس از عبور دادن آن از پیش گرم‌کن و گرم کردن هوا برای سوختن بهتر، هوا را از یک مجرای خاص و با فشار وارد کوره می‌کنند.

برای عادی نگه داشتن فشار داخل کوره و در نتیجه جلوگیری از انفجار کوره و همچنین خارج کردن گازهای ناشی از سوختن سوخت از فن‌های مکنده استفاده می‌شود. قبل از اینکه این فن‌ها گازها و گرد و غبار موجود در کوره را به محیط انتقال دهند باید گازها از داخل یک فیلتر عبور تا از آسیب‌های زیست محیطی ورود آنها به محیط زیست کاسته شود.






سیستم‌های پشتیبانی
جمع‌آوری خاکستر بادی

خاکستر بادی تولید شده در اثر سوختن سوخت به وسیله ته‌نشین کنندهٔ الکترواستاتیکی یا فیلتر کیسه‌ای (و یا هر دو) که در محل گازهای خروجی کوره قرار دارد جمع‌آوری می‌شود. پس از جمع‌آوری خاکسترها آنها را به صورت فشرده در انبار و تا زمانی که به محلی دیگر جابجا شوند نگه می‌دارند.
جمع‌آوری و دفع خاکستر کف کوره

کف هر کوره یک قیف برای جمع‌آوری خاکستر فراهم شده. این قیف به وسیله آب پر شده تا پراکنده شدن خاکسترها جلوگیری کند.





نیروی برق‌آبی
نیروی برق‌آبی یا هیدروالکتریسیته اصطلاحی است که به انرژی الکتریکی تولیدی از نیروی آب اطلاق می‌شود. در حال حاضر هیدروالکتریسیته چیزی در حدود ۷۱۵۰۰۰ مگاوات یا ۱۹٪ (۱۶٪ در سال ۲۰۰۳) از کل انرژی الکتریکی تولیدی جهان را پوشش می‌دهد. نیروی برق‌آبی همچنین ۶۳٪ از انرژی الکتریکی تولیدی از منابع تجدیدپذیر را نیز شامل می‌شود.






تولید انرژی الکتریکی
بیشتر نیروگاه‌های برق-آبی انرژی مورد نیاز خود را از انرژی پتانسیل آب پشت یک سد تامین می‌کنند. در این حالت انرژی تولیدی از آب به حجم آب پشت سد و اختلاف ارتفاع بین منبع و محل خروج آب سد وابسته‌است. به این اختلاف ارتفاع، ارتفاع فشاری می‌گویند و آن را با H (مخفف Head) نمایش می‌دهند. در واقع میزان انرژی پتانسیل آب با ارتفاع فشاری آن متناسب است. برای افزایش فاصله یا ارتفاع فشاری، آب معمولاً برای رسیدن به توربین آبی فاصله زیادی را در یک لوله بزرگ (penstock) طی می‌کند.

نیروگاه آب تلمبه‌ای، نوعی دیگر از نیروگاه آبی است. وظیفه یک نیروگاه آب تلمبه‌ای پشتیبانی شبکه الکتریکی در ساعات اوج مصرف (ساعات پیک) است. این نیروگاه تنها آب را در ساعات مختلف بین دو سطح جابجا می‌کند. در ساعاتی که تقاضای برای انرژی الکتریکی پایین است با پمپ کردن آب به یک منبع مرتفع انرژی الکتریکی را به انرژی پتانسیل گرانشی تبدیل می‌کند. در زمان اوج مصرف آب دوباره از مخزن به سمت پایین جاری می‌شود و با چرخاندن توربین آبی موجب تولید برق و رفع نیاز شبکه می‌گردد. این نیروگاه‌ها با ایجاد تعادل در ساعات مختلف موجب بهبود ضریب بار شبکه و کاهش هزینه‌های تولید انرژی الکتریکی می‌شوند.

از دیگر انواع نیروگاه‌های آبی می‌توان به نیروگاه‌های جزر و مدی اشاره کرد. همانطور که از نام این نیروگاه‌های مشخص است این نیروگاه‌ها نیروی مورد نیاز خود را از اختلاف ارتفاع آب در بین شبانه روز تامین می‌کنند. منابع در این دسته از نیروگاه‌ها نسبت به بقیه کاملاً قابل پیشبینی هستند. این نیروگاه‌ها همچنین می‌توانند در مواقع اوج مصرف به عنوان پشتیبان شبکه عمل کنند.

برخی نیروگاه‌های آبی که تعداد آنها زیاد هم نیست از انرژی جنبشی آب جاری استفاده می‌کنند. در این دسته از نیروگاه‌ها نیازی به احداث سد نیست توربین این نیروگاه‌ها شبیه یک چرخ آبی عمل می‌کند. این نوع استفاده از انرژی شاخه نسبتاً جدیدی از علم جنبش مایعات است.






سد
سد دیواری محکم از سنگ وسیمان و یا ساروج است که به منظور مهار کردن آب در عرض دره یا میان دو کوه ایجاد می‌شود. برعکس خاکریزها که برای جلوگیری از ورود آب رودخانه یا دریا به مناطق اطراف ساخته می‌شوند در سدها هدف از مهار کردن آب استفاده از آن است.

سدها از نظر مشخصه‌های مختلف طبقه‌بندی می‌شوند این مشخصه‌ها معمولاً شامل:

طول سد: از نظر طول سدهای با طول بیش از ۱۵ متر را سدهای بزرگ و سدهای با طول بیش از ۱۵۰ متر را سدهای بسیار بزرگ می‌نامند.
هدف از احداث سد: اهداف ساخت یک سد می‌توانند متفاوت باشند به طوری که بسیاری از سدها بیشتر از یک هدف را دنبال می‌کنند این اهداف می‌توانند شامل آبیاری یا تامین آب مناطق شهری یا زمین‌های کشاوزی، تولید انرژی الکتریکی، ایجاد فضای تفریحی، کنترل سیل و... باشند.
ساختار سد: از نظر ساختار، با توجه به مصالح مصرف شده یا تکنولوژی ساخت سدها باهم متفاوت هستند. سدها از نظر مصالح مصرف شده می‌توانند چوبی، خاکی یا بتنی باشند.







مزایا
ملاحظات اقتصادی

بیشترین مزیت استفاده از نیروگاه‌ها آبی عدم نیاز به استفاده از سوخت‌ها و در نتیجه حذف هزینه‌های مربوط به تامین سوخت است. درواقع هزینه انرژی الکتریکی تولیدی در یک نیروگاه آبی تقریباً از تغییرات قیمت سوخت‌های فسیلی نظیر نفت، گاز طبیعی و زغال سنگ مصون است. همچنین عمر متوسط نیروگاه‌های آبی در مقایسه با نیروگاه‌های گرمایی بیشتر است، به طوری که عمر برخی از نیروگاه‌های آبی که هم‌اکنون در حال استفاده هستند به ۵۰ تا ۱۰۰ سال پیش بازمی‌گردد. هزینه کار این نیروگاه‌ها در حالی که به صورت خودکار کار کنند کم است و بجز در موارد اضطراری به پرسنل زیادی در نیروگاه نیاز نخواهد بود.

در موقعیت‌هایی که استفاده از سد چندین هدف را پوشش می‌دهد، ساخت یک نیروگاه آبی هزینه نسبتاً کمی را به هزینه‌های ساخت سد اضافه می‌کند. ایجاد یک نیروگاه هیمچنین می‌تواند هزینه‌های مربوط به ساخت سد را جبران کند. برای مثال درآمد ناشی از فروش انرژی الکتریکی در سد «Three Gorges» که بزرگ‌ترین سد جهان است با فروش انرژی الکتریکی تولیدی در سد در طول ۵ تا ۷ سال جبران شده‌است.






انتشار گازهای گلخانه‌ای

در صورتی که سوختی در نیروگاه سوخته نشود، دی اکسید کربن (که یک گاز کلخانه‌ای است) نیز در نیروگاه تولید نخواهد شد. البته در مراحل احداث نیروگاه مقدار ناچیزی گاز دی‌اکسید کربن تولید می‌شود که در مقابل میزان دی‌اکسید کربن تولیدی در نیروگاه‌های گرمایی که از سوخت‌های فسیلی برای تولید انرژی گرمایی استفاده می‌کنند بسیار ناچیزاست. البته در این نیروگاه‌ها بر اثر اجتماع آب پشت سد گازهایی متصاعد می‌شود که در پایین به آنها اشاره شده‌است.






فعالیت‌های وابسته

آب ذخیره شده در پشت یک سد در واقع می‌تواند بخشی از امکانات مربوط به ورزش‌های آبی باشد و به این ترتیب می‌تواند به جاذبه‌ای برای گردشگران تبدیل شود. در برخی از کشورها از این آب برای پرورش موجودات آبزی مانند ماهی‌ها استفاده می‌شود به این ترتیب که در برخی سدها محیط‌های خاصی برای پرورش موجودات آبزی اختصاص یافته که همیشه از نظر داشتن آب پشتیبانی می‌شوند.






معایب
آسیب به محیط زیست

پروژه‌های احداث سد معمولاً با تغییرات زیادی در اکوسیستم منطقه احداث سد همراه هستند. برای مثال تحقیقات نشان می‌دهد که سدهای ساخته شده در کرانه‌های اقیانوس اطلس و اقیانوس آرام در آمریکای شمالی از میزان ماهی‌های قزل‌آلای رودخانه‌ها به شدت کاسته‌است و این به دلیل جلوگیری سد از رسیدن ماهی‌ها به بالای رودخانه برای تخم‌گذاری است و این درحالی است که برای عبور این ماهی‌ها به بالای رودخانه محل‌های خاصی در سد در نظرگرفته شده‌است. همچنین ماهی‌های کوچک در طول مهاجرت از رودخانه به دریا در بین توربین‌ها آسیب می‌بینند که برای رفع این عیب نیز در قسمتی از سال ماهی‌ها را با قایق‌های کوچک به پایین رودخانه می‌برند. با تمام فعالیت‌هایی که برای ایجاد محیط مناسب برای ماهی‌ها انجام می‌شود بازهم با ساخت سد از میزان ماهی‌ها کاسته می‌شود. در کشورهایی مانند ایالات متحده بستن مسیر مهاجرت ماهی‌ها و دیگر موجودات آبزری به وسیله سد ممنوع است و حتماً باید برای عبور آنها تمهیداتی اندیشیده شود. به این ترتیب در برخی موارد سدها می‌توانند واقعاً برای ماهی‌ها آسیب رسان باشند که نمونه‌ای از آنها سد مارموت (Marmot Dam) در ایالات متحده‌است که عملیات حذف آن در ۲۰ اکتبر ۲۰۰۷ به پایان رسید. پس از تخریب این سد رودخانه برای اولین بار پس از۱۰۰ سال جریان آزاد خود را آغاز کرد. عملیات حذف این سد بزرگ‌ترین عملیات حذف سد در ایالات متحده بود.

ایجاد سدها معمولاً باعث به وجود آمدن تغییراتی در قسمت‌های پایینی رودخانه می‌شوند. آب خروجی از توربین‌ها معمولاً حامل مقدار کمتری از رسوبات است و این خود باعث پاک شدن بستر رودخانه و از بین رفتن حاشیه‌های رودخانه می‌شود. به دلیل اینکه توربین‌ها معمولاً به نوبت کار می‌کنند نوساناتی در جریان آب خروجی ایجاد می‌شود که شدت فرسایش بستر رودخانه را افزایش می‌دهد. همچنین ظرفیت اکسیژن حل شده در آب به دلیل کار توربین‌ها کاهش می‌یابد چراکه آب خروجی توربین‌ها معمولاً گرمتر از آب ورودی آنهاست که این خود می‌تواند جان برخی گونه‌های حساس را به خطر بیندازد. برخی دیگر از سدها برای افزایش ارتفاع فشار مسیر رودخانه را منحرف کرده و باعث عبور آب از مناطق پر شیب‌تر می‌شوند و به این ترتیب مسیر قبلی رودخانه را خشک می‌کنند. برای مثال در رودخانه‌های تپاکو (Tekapo) و پوکاکی (Pukaki) از این روش استفاده شده‌است که نه تنها موجب به خطر افتادن برخی گونه‌های موجودات آبزی شده بلکه پرندگان مهاجر منطقه را نیز به شدت در خطر قرار داده‌است.

سدهای بسیار بسیار بزرگ مانند سد اسوان (در مصر) و سد سه‌دره (در چین) تغییرات زیادی را در بالا و پایین رودخانه به وجود می‌آورند.






انتشار گازهای گلخانه‌ای

آب جمع شده در پشت سد در مناطق گرمسیری می‌تواند مقدار قابل توجهی از گاز متان و گاز کربنیک را تولید کند. این گازها در اثر پوسیدگی قسمت‌های مختلف گیاهان و زباله‌هایی به وجود می‌آیند که از بالای رودخانه آمده‌اند و به وسیله باکتری‌های ناهوازی تجزیه می‌شوند. بیشتر گاز تولیدی در اثر پوسیدگی را گاز متان تشکیل می‌دهد که از نظر آثار گلخانه‌ای از دی‌اکسیدکربن خطرناک‌تر است. براساس گزارش کمیسیون جهانی سدها، در سدهایی که منبع آنها نسبت به برق تولیدی آنها کوچک است (کمتر از ۱۰۰ وات به ازای هر مترمربع از آب) و درخت‌های اطراف مسیر رودخانه پاکسازی نشده‌اند، میزان گاز گلخانه‌ای تولیدی از یک نیروگاه گرمایی با سوخت نفت بیشتر است.






جابجایی جمعیت

از دیگر معایب ساخت سدها، جابجایی جمعیت ساکن در مناطق زیر آب رفته توسط آب پشت سد است. این مناطق ممکن است شامل مناطقی باشد که از نظر فرهنگی یا اعتقادی دارای ارزش بالایی هستند و بدین ترتیب دلبستگی زیادی بین مردم ساکن با منطقه و آن منطقه خاص وجود دارد و به این ترتیب با بالا آمدن آب این مکان‌های تاریخی یا فرهنگی از بین خواهند رفت. از جمله سدهایی که در مراحل ساخت با این قبیل مشکلات روبه‌رو شدند می‌توان به سد سه‌دره یا سد کلاید اشاره کرد.






شکست سد

شکسته شدن سدها گرچه به ندرت اتفاق می‌افتد اما خطری جدی و خطرناک است. برای نمونه می‌توان به شکسته شدن سد بانکیاو (Banqiao) در جنوب چین اشاره کرد که موجب کشته شدن ۱۷۱۰۰۰ تن و بی‌خانمان شدن حدود نیم میلیون نفر شد. همچنین سدها می‌توانند هدف خوبی برای دشمن در طول جنگ یا اقدامات خرابکارانه تروریست‌ها باشند. سدهای کوچک در این حملات کمتر آسیب‌رسان هستند.

انتخاب محلی نامناسب برای احداث سد می‌تواند به فاجعه منجر شود، برای مثال می‌توان به سد واجنت (Vajont) در ایتالیا اشاره کرد که در سال ۱۹۶۳ موجب مرگ حدوداً ۲۰۰۰ نفر شد.






مقایسه‌ای با دیگر روش‌های تولید انرژی الکتریکی

نیروی برق‌آبی با ایجاد انرژی الکتریکی بدون سوزاندن سوخت‌ها از ایجاد آلوده‌کننده‌های متصاعد شده از سوختن سوخت‌های فسیلی مانند دی‌اکسید گوگرد، اسید نیتریک، منواکسید کربن، گرد غبار و سرب (موجود در زغال سنگ) جلوگیری می‌کند. همچنین هیدروالکتریسیته با از بین بردن ضرورت استفاده از سوخت‌هایی مانند زغال سنگ به طور غیرمستقیم خطرات ناشی از استخراج زغال سنگ را کاهش می‌دهد.

در مقایسه با نیروگاه هسته‌ای این نیروگاه‌ها زباله هسته‌ای تولید نمی‌کنند. همچنین خطرات مربوط به تماس با اورانیوم در معادن یا نشت مواد هسته‌ای را نیز ندارند و برعکس اورانیوم در این دسته از نیروگاه‌ها از انرژی‌های تجدید پذیری استفاده می‌شود.

در مقایسه با مولدهای بادی، منابع انرژی در نیروگاه‌های آبی خیلی قابل پیش‌بینی‌تر هستند. همچنین این نیروگاه‌ها می‌توانند ضریب بار شبکه را بهبود دهند و در زمان نیاز شروع به تولید انرژی الکتریکی کرده و به این ترتیب موجب تعدیل شبکه در طول ساعات پیک شوند.

برعکس نیروگاه‌های گرمایی در نیروگاه‌های آبی زمان زیادی صرف مطالعات مربوط به سد می‌شود. معمولاً برای انجام دقیق محاسبات، داده‌های حدود ۵۰ سال از رفتارهای رودخانه برای انتخاب بهترین مکان احداث سد و روش ساخت آن لازم است. برعکس نیروگاه‌هایی که از سوخت‌ها برای تامین انرژی استفاده می‌کنند، مکان‌های مناسب برای احداث نیروگاه‌های آبی محدود هستند. همچنین بیشتر نیروگاه‌های آبی از مراکز تجمع جمعیت دور هستند و باید برای انتقال آنها نیز هزینه‌ای صرف کرد. از دیگر ضعف‌های این نیروگاه وابستگی شدید به میزان آب ورودی است و از آنجایکه میزان آب پشت سد به بارش‌ها وابسته‌است و در صورتیکه که میزان بارش برف و باران کاهش یابد میزان تولید انرژی الکتریکی نیز کاهش می‌یابد.





انرژی خورشیدی
انرژی خورشیدی به گرما و نور تولید شده توسط خورشید می‌گویند.






انرژی از خورشید

خورشید از گازهایی نظیر هیدروژن (۷۳٫۴۶درصد) هلیوم (۲۴٫۸۵ درصد) و عناصر دیگری تشکیل شده است که از جمله آن‌ها می‌توان به اکسیژن، کربن، نئون و نیتروژن اشاره نمود.

انرژی ستاره خورشید یکی از منابع عمده انرژی در منظومه شمسی می‌باشد. طبق آخرین برآوردهای رسمی اعلام شده عمر این انرژی بیش از ۱۴ میلیارد سال می‌باشد. در هر ثانیه ۲/۴ میلیون تن از جرم خورشید به انرژی تبدیل می‌شود. با توجه به جرم خورشید که حدود ۳۳۳ هزار برابر جرم زمین است. این کره نورانی را می‌توان به‌عنوان منبع عظیم انرژی تا ۵ میلیارد سال آینده به حساب آورد.

میزان دما در مرکز خورشید حدود ۱۰ تا ۱۴ میلیون درجه سانتیگراد می‌باشد که از سطح آن با حرارتی نزدیک به ۵۶۰۰ درجه و به صورت امواج الکترو مغناطیسی در فضا منتشر می‌شود.

زمین در فاصله ۱۵۰ میلیون کیلومتری خورشید واقع است و ۸ دقیقه و ۱۸ ثانیه طول می‌کشد تا نور خورشید به زمین برسد. بنابراین سهم زمین در دریافت انرژی از خورشید میزان کمی از کل انرژی تابشی آن می‌باشد. سرمنشاء تمام اشکال مختلف انرژیهای شناخته شده تاکنون شامل (سوختهای فسیلی ذخیره شده درزمین، انرژی‌های بادی، آبشارها، امواج دریاها و...) موجود در کره زمین از خورشید می‌باشد.

انرژی خورشید همانند سایر انرژی‌ها بطور مستقیم یا غیر مستقیم می‌تواند به دیگر اشکال انرژی تبدیل شود، همانند گرما و الکتریسیته و.... ولیکن موانعی شامل (ضعف علمی و تکنیکی در تبدیل بعلت کمبود دانش و تجربه میدانی - متغیر و متناوب بودن مقدار انرژی به دلیل تغییرات جوی و فصول سال و جهت تابش - محدوده توزیع بسیار وسیع) موجب گردیده تا استفاده کمی از این انرژی صورت گیرد.

استفاده ازمنابع عظیم انرژی خورشید برای تولید انرژی الکتریسته، استفاده دینامیکی، ایجاد گرمایش محوطه‌ها و ساختمانها، خشک کردن تولیدات کشاورزی و تغییرات شیمیایی و..... اخیراً شروع گردیده‌است.






انرژی خورشیدی

انرژی خورشیدی منحصربه‌فردترین منبع انرژی تجدیدپذیر در جهان است و منبع اصلی تمامی انرژی‌های موجود در زمین می‌باشد. انرژی خورشیدی به صورت مستقیم و غیرمستقیم می‌تواند به اشکال دیگر انرژی تبدیل گردد. بطور کلی انرژی متصاعد شده از خورشیدی در حدود ۳٫۸ در۱۰۲۳ کیلووات در ثانیه می‌باشد.

ایران با داشتن حدود ۳۰۰ روز آفتابی در سال جزو بهترین کشورهای دنیا در زمینه پتانسیل انرژی خورشیدی در جهان می‌باشد. با توجه به موقعیت جغرافیای ایران و پراکندگی روستای در کشور، استفاده از انرژی خورشیدی یکی از مهمترین عواملی است که باید مورد توجه قرار گیرد. استفاده از انرژی خورشیدی یکی از بهترین راه‌های برق رسانی و تولید انرژی در مقایسه با دیگر مدل‌های انتقال انرژی به روستاها و نقاط دور افتاده در کشور از نظر هزینه، حمل‌نقل، نگهداری و عوامل مشابه می‌باشد.

با توجه به استانداردهای بین‌المللی اگر میانگین انرژی تابشی خورشید در روز بالاتر از ۳٫۵ کیلووات ساعت در مترمربع (۳۵۰۰ وات/ساعت) باشد استفاده از مدلهای انرژی خورشیدی نظیر کلکتورهای خورشیدی یا سیستم‌های فتوولتائیک بسیار اقتصادی و مقرون به صرفه است.

در بسیاری از قسمتهای ایران انرژی تابشی خورشید بسیار بالاتر از این میانگین بین‌المللی می‌باشد و در برخی از نقاط حتی بالاتر از ۷ تا ۸ کیلو وات ساعت بر مترمربع اندازه‌گیری شده است ولی بطور متوسط انرژی تابشی خورشید بر سطح سرزمین ایران حدود ۴٫۵ کیلو وات ساعت بر مترمربع است.






تاریخچه

شناخت انرژی خورشیدی و استفاده از آن برای منظورهای مختلف به زمان ماقبل تاریخ باز می‌گردد. شاید به دوران سفالگری، در آن هنگام روحانیون معابد به کمک جام‌های بزرگ طلائی صیقل داده شده و اشعه خورشید، آتشدان‌های محرابها را روشن می‌کردند. یکی از فراعنه مصر معبدی ساخته بود که با طلوع خورشید درب آن باز و با غروب خورشید درب بسته می‌شد.

ولی مهم‌ترین روایتی که درباره استفاده از خورشید بیان شده داستان ارشمیدس دانشمند و مخترع بزرگ یونان قدیم می‌باشد که ناوگان روم را با استفاده از انرژی حرارتی خورشید به آتش کشید گفته می‌شود که ارشمیدس با نصب تعداد زیادی آئینه‌های کوچک مربعی شکل در کنار یکدیگر که روی یک پایه متحرک قرار داشته‌است اشعه خورشید را از راه دور روی کشتی‌های رومیان متمرکز ساخته و به این ترتیب آنها را به آتش کشیده‌است. در ایران نیز معماری سنتی ایرانیان باستان نشان دهنده توجه خاص آنان در استفاده صحیح و مؤثر از انرژی خورشید در زمان‌های قدیم بوده‌است.

با وجود آنکه انرژی خورشید و مزایای آن در قرون گذشته به خوبی شناخته شده بود ولی بالا بودن هزینه اولیه چنین سیستم‌هایی از یک طرف و عرضه نفت و گاز ارزان از طرف دیگر سد راه پیشرفت این سیستم‌ها شده بود تا اینکه افزایش قیمت نفت در سال ۱۹۷۳ باعث شد که کشورهای پیشرفته صنعتی مجبور شدند به مسئله تولید انرژی از راه‌های دیگر (غیر از استفاده سوختهای فسیلی) توجه جدی‌تری نمایند.

کاربردهای الکتریکی فتو ولتایک‌ها را آزمایش می‌کنند، یک فرایند که توسط آن انرژی نور خورشید به طور مستقیم به الکتریسیته تبدیل می‌شود. الکتریسیته می‌تواند به طور مستقیم از انرژی خورشید تولید شود و ابزارهای فتوولتایک استفاده کند یا به طور غیر مستقیم از ژنراتورهای بخار ذخایر حرارتی خورشیدی را برای گرما بخشیدن به یک سیال کاربردی مورد استفاده قرار می‌دهند.
کاربردهای انرژی خورشید

در عصر حاضر از انرژی خورشیدی توسط سیستم‌های مختلف استفاده می‌شود که عبارت‌اند از:

استفاده از انرژی حرارتی خورشید برای مصارف خانگی، صنعتی و نیروگاهی.
تبدیل مستقیم پرتوهای خورشید به الکتریسیته بوسیله تجهیزاتی به نام فتوولتائیک.







انرژی فتوولتائیک

انرژی فتوولتایک به تبدیل نور خورشید به الکتریسیته از طریق یک سلول فوتوولتاییک (pvs) گفته می‌شود، که به طور معمول توسط یک سلول خورشیدی انجام می‌پذیرد. سلول خورشیدی یک ابزار غیر مکانیکی است که معمولاً از آلیاژ سیلیکون ساخته می‌شود.

نور خورشید از فوتون‌ها یا ذرات انرژی خورشیدی ساخته شده‌است. این فوتون‌ها که مقادیر متغیر انرژی را شامل می‌شوند، درست مشابه با طول موجهای متفاوت طیف‌های نوری هستند.

وقتی فوتون‌ها به یک سلول فوتوولتاییک برخورد می‌کنند، ممکن است منعکس شوند، مستقیم از میان آن عبور کنند و یا جذب شوند. فقط فوتون‌های جذب شده انرژی را برای تولید الکتریسیته فراهم می‌کنند. وقتی که نور خورشید کافی یا انرژی توسط جسم نیمه رسانا جذب شود، الکترون‌ها از اتم‌های جسم جدا می‌شوند. (به دلیل اینکه آخرین الکترون یک اتم با گرفتن انرزی فوتون به لایه بالاتر رفته و می‌تواند از میدان پروتون خلاص شده و آزادانه در نیمه رسانا حرکت کند.)

رفتار خاص سطح جسم در طول ساختن باعث می‌شود سطح جلویی سلول که برای الکترون‌های آزاد بیشتر پذیرش یابد. بنا براین الکترون‌ها بطور طبیعی به سطح مهاجرت می‌کنند.

زمانی که الکترون‌ها موقعیت n را ترک می‌کنند، سوراخ‌هایی شکل می‌گیرد. تعداد الکترونها زیاد بوده و هر کدام یک بار منفی را حمل می‌کنند و به طرف جلو سطح سلول پیش می‌روند، در نتیجه عدم توازون بار بین سلولهای جلویی وسطوح عقبی یک پتانسیل ولتاژ شبیه قطب‌های مثبت ومنفی یک باتری ایجاد می‌شود.

وقتی که دو سطح از میان یک راه داخلی مرتبط می‌شود، الکتریسیته جریان می‌باشد

با این وجود، توان ۱یا ۲ وات تولید می‌کند، که برای بیشتر کار بردها این مقدار از انرژی کافی نیست. برای اینکه بازده انرژی را افزایش دهیم، سلولها بطور الکتریکی به داخل هوای بسته یک مدول سخت مرتبط می‌شود.







این فوتون است

اصطلاح آرایش به کل صفحه انرژی اشاره می‌کند، اگر چه آن از یک یا چند هزار مدول ساخته شده باشد، آن تعداد مدولهای مورد نیاز می‌توانند بهم مرتبط شوند برای اینکه اندازه آرایش مورد نیاز (تولید انرژی) را تشکیل دهند. اجرای یک آرایش فوتوولتاییک به انرژی خورشید وابسته‌است.

شرایط آب وهوایی (همانند ابر و مه) تاثیر مهمی روی انرزی خورشیدی دریافت شده توسط یک آرایش pv و در عوض، اجرایی آن دارد. بیشتر تکنولوژی مدول‌های فوتوولتاییک در حدود ۱۰ درصد موثر هستند در تبدیل انرژیخورشید با تحقیق بیشتر مرتبط شوند برای اینکه این کار را به ۲۰ درصدافزایش دهند.

سلولهای pv که در سال ۱۹۵۴ توسط تحقیقات تلفنی بل bell کشف شد حساسیت یک آب سیلیکونی حاضر به خورشید را به طور خاصی آزمایش کرد. ابتدا در گذشته در دهه ۱۹۵۰،pvs برای تامین انرژی قمرهای فضا در یک مورد استفاده قرار گرفتند.

موفقیت pvs در فضا کار بردهای تجاری برای تکنو لوژی pvs تولید کرد. ساده‌ترین سیستم‌های فوتوولتاییک انرژی تعداد زیادی از ماشین حساب‌های کوچک و ساعتهای مچی که روزانه مورد استفاده قرار می‌گیرد را تأمین می‌کند.

بیشتر سیستم‌های پیچیده الکتریسیته را برای پمپاژ آب، انرژی ابزارهای ارتباطی، وحتی فراهم کردن الکتریسیته برای خانه هایمان فراهم می‌کنند.

تبدیل فوتوولتاییک به چندین دلیل مفید است. تبدیل نور خورشیدبه الکتریسیته مستقیم است، بنابراین سیستم‌های تولید کننده مکانیکی به حجم زیادی لازم نیستند. خصوصیت مدولی انرژی فوتوولتاییک اجازه می‌دهد به طور سریع آرایش‌ها در هر اندازه مورد نیاز یا اجازه داده شده نصب شوند.

همچنین، تاثیر محیطی یک سیستم فوتوولتاییک حد اقل است، آب را برای سیستم نیاز ندارد پختن و تولید محصول فرعی نیست. سلولهای فتوولتاتیک، همانند باتریها، جریان مستقیم (dc)را تولید می‌کنند که به طور عمومی برای برای راههای کوچکی مورد استفاده‌است (ابزار الکترونیک). وقتی که جریان مستقیم از سلولهای فتوولتاتیک برای کاربردهای تجاری یا لحیم کردن کار بردهای الکتریکی استفاده می‌شود. راندمان سلولهای فتوولتایک در سال ۲۰۱۰ حدود ۱۷٪ می‌باشد و توان آن در تابش مستقیم آفتاب (۱۰۰۰ وات بر متر مربع) به ازای هر متر مربع حدود ۱۷۰ وات است.

شبکه‌های الکتریکی بایستی به جریان متناوب (AC)برای استفاده تبدیل کننده‌ها تبدیل شوند، Inverterها ابزارهایی هستند که جریان مستقیم را به جریان متناوب تبدیل می‌کنند. به طور تاریخی PVS در جاهای دور برای تولید الکتریسیته بکار گرفته شده‌است. با این وجود یک بازار برای تولید از PVS را توزیع کنند ممکن است با بی نظمی قیمتهای تبدیل و توزیع همزمان با بی نظمی الکتریکی توسعه داده شود.

جایگزین ژنراتوهای کوچک مقیاس عددی در تغذیه کنندهای الکتریکی می‌توانند اقتصاد واعتبار سیستم توزیع را بهبود بخشد.






استفاده از انرژی حرارتی خورشید

این بخش از کاربردهای انرژی خورشید شامل دو گروه نیروگاهی و غیر نیروگاهی می‌باشد.






کاربردهای نیروگاهی

تأسیساتی که با استفاده از آنها انرژی جذب شده حرارتی خورشید به الکتریسیته تبدیل می‌شود نیروگاه حرارتی خورشیدی نامیده می‌شود این تأسیسات بر اساس انواع متمرکز کننده‌های موجود و بر حسب اشکال هندسی متمرکز کننده‌ها به سه دسته تقسیم می‌شوند:

نیروگاههایی که گیرنده آنها آینه‌های سهموی ناودانی هستند
نیروگاه‌هایی که گیرنده آنها در یک برج قرار دارد و نور خورشید توسط آینه‌های بزرگی به نام هلیوستات به آن منعکس می‌شود. (دریافت کننده مرکزی)
نیروگاه‌هایی که گیرنده آنها بشقابی سهموی (دیش) می‌باشد

قبل از توضیح در خصوص نیروگاه خورشیدی بهتر است شرح مختصری از نحوه کارکرد نیروگاه‌های تولید الکتریسیته داده شود. بهتر است بدانیم در هر نیروگاهی اعم از نیروگاههای آبی، نیروگاههای بخاری و نیروگاههای گازی برای تولید برق از ژنراتورهای الکتریکی استفاده می‌شود که با چرخیدن این ژنراتورها برق تولید می‌شود. این ژنراتورهای الکتریکی انرژی دورانی خود را از دستگاهی بنام توربین تأمین می‌کنند. بدین ترتیب می‌توان گفت که ژنراتورها انرژی جنبشی را به انرژی الکتریکی تبدیل می‌کنند. تأمین کننده انرژی جنبشی ژنراتورها، توربین‌ها هستند که انواع مختلف دارند. در نیروگاه‌های بخاری توربین‌هایی وجود دارند که بخار با فشار و دمای بسیار بالا وارد آنها شده و موجب به گردش در آمدن پره‌های توربین می‌گردد. در نیروگاه‌های آبی که روی سدها نصب می‌شوند انرژی پتانسیل موجود در آب موجب به گردش در آمدن پره‌های توربین می‌شود.

بدین ترتیب می‌توان گفت در نیروگاههای آبی انرژی پتانسیل آب به انرژی جنبشی و سپس به الکتریکی تبدیل می‌شود، در نیروگاههای حرارتی بر اثر سوختن سوختهای فسیلی مانند مازوت، آب موجود در سیستم بسته نیروگاه داخل دیگ بخار (بویلر) به بخار تبدیل می‌شود و بدین ترتیب انرژی حرارتی به جنبشی و سپس به الکتریکی تبدیل می‌شود در نیروگاههای گازی توربینهایی وجود دارد که بطور مستقیم بر اثر سوختن گاز به حرکت درآمده و ژنراتور را می‌گرداند و انرژی حرارتی به جنبشی و سپس به الکتریکی تبدیل می‌شود. و اما در نیروگاههای حرارتی خورشیدی وظیفه اصلی بخش‌های خورشیدی تولید بخار مورد نیاز برای تغذیه توربینها است یا به عبارت دیگر می‌توان گفت که این نوع نیروگاهها شامل دو قسمت هستند:

سیستم خورشیدی که پرتوهای خورشید را جذب کرده و با استفاده از حرارت جذب شده تولید بخار می‌نماید.
سیستمی موسوم به سیستم سنتی که همانند دیگر نیروگاههای حرارتی بخار تولید شده را توسط توربین و ژنراتور به الکتریسیته تبدیل می‌کند.







نیروگاه‌های حرارتی خورشید از نوع سهموی خطی

در این نیروگاه‌ها، از منعکس کننده‌هایی که به صورت سهموی - خطی می‌باشند جهت تمرکز پرتوهای خورشید در خط کانونی آنها استفاده می‌شود و گیرنده به صورت لوله‌ای در خط کانونی منعکس کننده‌ها قرار دارد. در داخل این لوله روغن مخصوصی در جریان است که بر اثر حرارت پرتوهای خورشید گرم و داغ می‌گردد.

روغن داغ از مبدل حرارتی عبور کرده و آب را به بخار به مدارهای مرسوم در نیروگاه‌های حرارتی انتقال داده می‌شود تا به کمک توربین بخار و ژنراتور به توان الکتریکی تبدیل گردد.

برای بهره‌گیری بیشتر و افزایش بازدهی لوله دریافت کننده سطح آن را با اکسید فلزی که ضریب بالایی دارد پوشش می‌دهند و همچنین در محیط اطراف آن لوله شیشه‌ای به صورت لفاف پوشیده می‌شود تا از تلفات گرمایی و افت تشعشعی جلوگیری گردد و نیز از لوله دریافت کننده محافظت بعمل آید.

ضمناً بین این دو لوله خلاء بوجود می‌آوردند برای آنکه پرتوهای تابشی خورشید در تمام طول روز به صورت مستقیم به لوله دریافت کننده برسد.

در این نیروگاهها یک سیستم ردیاب خورشید نیز وجود دارد که بوسیله آن آینه‌های شلجمی دائماً خورشید را دنبال می‌کنند و پرتوهای آن را روی لوله دریافت کننده متمرکز می‌نمایند.

تغییرات تابش خورشید در این نیروگاهها توسط منبع ذخیره و گرمکن سوخت فسیلی جبران می‌شوند. در چند کشور نظیر ایالات متحده آمریکا، اسپانیا، مصر، مکزیک، هند و مراکش از نیروگاه‌های سهموی خطی استفاده شده‌است که این نیروگاه‌ها یا در مرحله ساخت و یا در مرحله بهره‌برداری قرار دارند. در ایران نیز تحقیقات و مطالعاتی در زمینه این نیروگاهها انجام شده و پروژه یک نیروگاه تحقیقاتی با ظرفیت ۳۵۰ کیلووات توسط سازمان انرژی‌های نو ایران در شیراز ساخته شده است.

کلیه مراحل مطالعاتی، طراحی و ساخت این نیروگاه به طور کامل توسط مختصصین و مهندسان ایرانی انجام شده است.

بدیهی است که با افزایش ظرفیت فنی و علمی که در اثر اجرای پروژه نیروگاه خورشیدی شیراز عاید محققین مجرب ایرانی می‌شود ایران در زمره محدود کشورهای سازنده نیروگاه‌های خورشید از نوع متمرکز کننده‌های سهموی خطی قرار خواهند گرفت.






نیروگاههای حرارتی از نوع دریافت کننده مرکزی

در این نیروگاه‌ها پرتوهای خورشیدی توسط مزرعه‌ای متشکل از تعداد زیادی آینه منعکس کننده بنام هلیوستات بر روی یک دریافت کننده که در بالای برج نسبتاً بلندی استقرار یافته‌است متمرکز می‌گردد. در نتیجه روی محل تمرکز پرتوها انرژی گرمایی زیادی بدست می‌آید که این انرژی بوسیله سیال عامل که داخل دریافت کننده در حرکت است، جذب می‌شود و بوسیله مبدل حرارتی به سیستم آب و بخار مرسوم در نیروگاه‌های سنتی منتقل شده و بخار فوق گرم در فشار و دمای طراحی شده برای استفاده در توربین ژنراتور تولید می‌گردد.

این سیال عامل در مبدلهای حرارتی در کنار آب قرار گرفته و موجب تبدیل آن به بخار با فشار و حرارت بالا می‌گردد. در برخی از سیستم‌ها سیال عامل آب است و مستقیماً در داخل دریافت کننده به بخار تبدیل می‌شود.

برای استفاده دائمی از این نوع نیروگاه در زمانی که تابش خورشید وجود ندارد مثلاً ساعات ابری یا شبها از سیستم‌های ذخیره کننده حرارت و یا احیاناً از تجهیزات پشتیبانی که ممکن است از سوخت فسیلی استفاده کنند جهت ایجاد بخار برای تولید برق کمک گرفته می‌شود.

مطالعات و تحقیقات در زمینه فناوری و سیستمهای این نیروگاه‌ها ادامه دارد و آزمایشگاهها و مؤسسات متعددی در سراسر دنیا در این زمینه فعالیت می‌کنند.

مطالعات ساخت اولین نیروگاه خورشیدی ایران از نوع دریافت کننده مرکزی توسط سازمان انرژیهای نو ایران و با کمک شرکتهای مشاور و سازنده داخلی با ظرفیت یک مگاوات و سیال عامل آب و بخار در طالقان جریان دارد. کلیه مطالعات اولیه و پتانسیل سنجی و طراحی نیروگاه به انجام رسیده و یک نمونه هلیوستات نیز ساخته شده‌است.






نیروگاه‌های حرارتی از نوع بشقابی

در این نیروگاهها از منعکس کننده‌هایی که به صورت شلجمی بشقابی می‌باشد جهت تمرکز نقطه‌ای پرتوهای خورشیدی استفاده می‌گردد و گیرنده‌هایی که در کانون شلجمی قرار می‌گیرند به کمک سیال جاری در آن انرژی گرمایی را جذب نموده و به کمک یک ماشین حرارتی و ژنراتور آن را به نوع مکانیکی و الکتریکی تبدیل می‌نماید.






دودکش‌های خورشیدی

روش دیگر برای تولید الکتریسیته از انرژی خورشید استفاده از برج نیرو یا دودکش‌های خورشیدی می‌باشد در این سیستم از خاصیت دودکش‌ها استفاده می‌شود به این صورت که با استفاده از یک برج بلند به ارتفاع حدود ۲۰۰ متر و تعداد زیادی گرم خانه‌های خورشیدی که در اطراف آن است هوای گرمی که بوسیله انرژی خورشیدی در یک گرمخانه تولید می‌شود و به طرف دودکش یا برج که در مرکز گلخانه‌ها قرار دارد، هدایت می‌شود.

این هوای گرم بعلت ارتفاع زیاد برج با سرعت زیاد صعود کرده و با عث چرخیدن پروانه و ژنراتوری که در پایین برج نصب شده‌است می‌گردد و بوسیله این ژنراتور برق تولید می‌شود هم اکنون یک نمونه از این سیستم در ۱۶۰ کیلومتری جنوب مادرید احداث گردیده که ارتفاع برج آن به ۲۰۰ متر می‌رسد.






مزایای نیروگاههای خورشیدی

نیروگاه‌های خورشیدی که انرژی خورشید را به برق تبدیل می‌کنند امید است در آینده با مزایای قاطعی که در برابر نیروگاه‌های فسیلی و اتمی دارند به خصوص اینکه سازگار با محیط زیست می‌باشند، مشکل برق بخصوص در دوران اتمام ذخائر نفت و گاز را حل نمایند. تأسیس و بکارگیری نیروگاه‌های خورشیدی آینده‌ای پر ثمر و زمینه‌ای گسترده را برای کمک به خودکفایی و قطع وابستگی کشور به صادرات نفت فراهم خواهد کرد. اکنون شایسته‌است که به ذکر چند مورد از مزایای این نیروگاه‌ها بپردازیم.






الف) تولید برق بدون مصرف سوخت

نیروگاه‌های خورشیدی نیاز به سوخت ندارند و برخلاف نیروگاه‌های فسیلی که قیمت برق تولیدی آنها تابع قیمت نفت بوده و همیشه در حال تغییر می‌باشد. در نیروگاه‌های خورشیدی این نوسان وجود نداشته و می‌توان بهای برق مصرفی را برای مدت طولانی ثابت نگهداشت.






ب) عدم احتیاج به آب زیاد

نیروگاه‌های خورشیدی بخصوص دودکشهای خورشیدی با هوای گرم احتیاج به آب ندارند لذا برای مناطق خشک مثل ایران بسیار حائز اهمیت می‌باشند. (نیروگاه‌های حرارتی سنتی هنگام فعالیت نیاز به آب مصرفی زیادی دارند).






ت) امکان تأمین شبکه‌های کوچک و ناحیه‌ای

نیروگاه‌های خورشیدی می‌توانند با تولید برق به شبکه سراسری برق نیرو برسانند و در عین امکان تأمین شبکه‌های کوچک ناحیه‌ای، احتیاج به تأسیس خطوط فشار قوی طولانی جهت انتقال برق ندارند و نیاز به هزینه زیاد احداث شبکه‌های انتقال نمی‌باشد.






ث) استهلاک کم و عمر زیاد

نیروگاه‌های خورشیدی بدلایل فنی و نداشتن استهلاک زیاد دارای عمر طولانی می‌باشند در حالی که عمر نیروگاه‌های فسیلی بین ۱۵ تا ۳۰ سال محاسبه شده‌است.






ج) عدم احتیاج به متخصص

نیروگاه‌های خورشیدی احتیاج به متخصص عالی ندارند و می‌توان آنها را بطور اتوماتیک بکار انداخت، در صورتی که در نیروگاه‌های اتمی وجود متخصصین در سطح عالی ضروری بوده و این دستگاهها احتیاج به مراقبتهای دائمی و ویژه دارند.






کاربردهای غیر نیروگاهی

کابردهای غیر نیروگاهی از انرژی حرارتی خورشید شامل موارد متعددی می‌باشد که اهم آنها عبارت‌اند از: آبگرمکن و حمام خورشیدی – سرمایش و گرمایش خورشیدی – آب شیرین کن خورشیدی – خشک کن خورشیدی – اجاق خورشیدی – کوره‌های خورشیدی و خانه‌های خورشیدی.






الف – آبگرمکن‌های خورشیدی و حمام خورشیدی

تولید آب گرم تهیه آب گرم بهداشتی در منازل و اماکن عمومی به خصوص در مکانهایی که مشکل سوخت رسانی وجود دارد استفاده کرد. چنانچه ظرفیت این سیستمها افزایش یابد می‌توان از آنها در حمامهای خورشیدی نیز استفاده نمود. تاکنون با توجه به موقعیت جغرافیایی ایران تعداد زیادی آب گرمکن خورشیدی و چندین دستگاه حمام خورشیدی در نقاط مختلف کشور از جمله استان‌های خراسان، سیستان و بلوچستان، یزد و کرمان نصب و راه‌اندازی شده‌است.






ب – گرمایش و سرمایش ساختمان و تهویه مطبوع خورشیدی

اولین خانه خورشیدی در سال ۱۹۳۹ساخته شد که در آن از مخزن گرمای فصلی برای بکارگیری گرمای آن در طول سال استفاده شده‌است. گرمایش و سرمایش ساختمانها با استفاده از انرژی خورشید، ایده تازه‌ای بود که در سالهای ۱۹۳۰ مطرح شد و در کمتر از یک دهه به پیشرفتهای قابل توجهی رسید. با افزودن سیستمی معروف به سیستم تبرید جذبی به سیستم‌های خورشیدی می‌توان علاوه بر آب گرم مصرفی و گرمایش از این سیستم‌ها در فصول گرما برای سرمایش ساختمان نیز استفاده کرد.






پ – آب شیرین کن خورشیدی

هنگامی که حرارت دریافت شده از خورشید با درجه حرارت کم روی آب شور اثر کند تنها آب تبخیر شده و املاح باقی می‌ماند.

سپس با استفاده از روشهای مختلف می‌توان آب تبخیر شده را تنظیم کرده و به این ترتیب آب شیرین تهیه کرد. با این روش می‌توان آب بهداشتی مورد نیاز در نقاطی که دسترسی به آب شیرین ندارند مانند جزایر را تأمین کرد.

آب شیرین کن خورشیدی در دو اندازه خانگی و صنعتی ساخته می‌شوند. در نوع صنعتی با حجم بالا می‌توان برای استفاده شهرها آب شیرین تولید کرد.






ت – خشک کن خورشیدی

خشک کردن مواد غذایی برای نگهداری آنها از زمانهای بسیار قدیم مرسوم بوده و انسان‌های نخستین خشک کردن را یک هنر می‌دانستند.

خشک کردن عبارت است از گرفتن قسمتی از آب موجود در مواد غذایی و سایر محصولات که باعث افزایش عمر انباری محصول و جلوگیری از رشد باکتریها می‌باشد. در خشک کن‌های خورشیدی بطور مستقیم و یا غیر مستقیم از انرژی خورشیدی جهت خشک نمودن مواد استفاده می‌شود و هوا نیز به صورت طبیعی یا اجباری جریان یافته و باعث تسریع عمل خشک شدن محصول می‌گردد. خشک کن‌های خورشیدی در اندازه‌ها و طرحهای مختلف و برای محصولات و مصارف گوناگون طراحی و ساخته می‌شوند.






ث – اجاق‌های خورشیدی

دستگاه‌های خوراک پز خورشیدی اولین بار بوسیله شخصی بنام نیکلاس ساخته شد. اجاق او شامل یک جعبه عایق بندی شده با صفحه سیاه رنگی بود که قطعات شیشه‌ای درپوش آن را تشکیل می‌داد اشعه خورشید با عبور از میان این شیشه‌ها وارد جعبه شده و بوسیله سطح سیاه جذب می‌شد سپس درجه حرارت داخل جعبه را به ۸۸ درجه افزایش می‌داد. اصول کار اجاق خورشیدی جمع‌آوری پرتوهای مستقیم خورشید در یک نقطه کانونی و افزایش دما در آن نقطه می‌باشد. امروزه طرح‌های متنوعی از این سیستم‌ها وجود دارد که این طرح‌ها در مکان‌های مختلفی از جمله آفریقای جنوبی آزمایش شده و به نتایج خوبی نیز رسیده‌اند. استفاده از این اجاق‌ها به ویژه در مناطق شرقی ایران که با مشکل کمبود سوخت مواجه می‌باشند بسیار مفید خواهد بود.






ج – کوره خورشیدی

در قرن هجدهم نوتورا اولین کوره خورشیدی را در فرانسه ساخت و بوسیله آن یک تل چوبی را در فاصله ۶۰ متری آتش زد.

بسمر پدر فولاد جهان نیز حرارت مورد نیاز کوره خود را از انرژی خورشیدی تأمین می‌کرد. متداولترین سیستم یک کوره خورشیدی متشکل از دو آینه یکی تخت و دیگری کروی می‌باشد. نور خورشید به آینه تخت رسیده و توسط این آینه به آینه کروی بازتابیده می‌شود. طبق قوانین اپتیک هر گاه دسته پرتوی موازی محور آینه با آن برخورد نماید در محل کانون متمرکز می‌شوند به این ترتیب انرژی حرارتی گسترده خورشید در یک نقطه جمع می‌شود که این نقطه به دماهای بالایی می‌رسد. امروزه پروژه‌های متعددی در زمینه کوره‌های خورشید در سراسر جهان در حال طراحی و اجراء می‌باشد.






چ – خانه‌های خورشیدی

ایرانیان باستان از انرژی خورشیدی برای کاهش مصرف چوب در گرم کردن خانه‌های خود در زمستان استفاده می‌کردند. آنان ساختمانها را به ترتیبی بنا می‌کردند که در زمستان نور خورشید به داخل اتاقهای نشیمن می‌تابید ولی در روزهای گرم تابستان فضای اتاق در سایه قرار داشت. در اغلب فرهنگ‌های دیگر دنیا نیز می‌توان نمونه‌هایی از این قبیل طرحها را مشاهده نمود. در سالهای بین دو جنگ جهانی در اروپا و ایالات متحده طرحهای فراوانی در زمینه خانه‌های خورشیدی مطرح و آزمایش شد. از آن زمان به بعد تحول خاصی در این زمینه صورت نگرفت. حدود چند سالی است که معماران بطور جدی ساخت خانه‌های خورشیدی را آغاز کرده‌اند و به دنبال تحول و پیشرفت این تکنولوژی به نتایج مفیدی نیز دست یافته‌اند مثلاً در ایالات متحده در سال ۱۸۹۰ به تنهایی حدود ۱۰ تا ۲۰ هزار خانه خورشیدی ساخته شده‌است. در این گونه خانه‌ها سعی می‌شود از انرژی خورشید برای روشنایی – تهیه آب گرم بهداشتی – سرمایش و گرمایش ساختمان استفاده شود و با بکار بردن مصالح ساختمانی مفید از اتلاف گرما و انرژی جلوگیری شود.

در ایران نیز پروژه ساخت اولین ساختمان خورشیدی واقع در ضلع شمالی دانشگاه علم و صنعت و به منظور مطالعه و پژوهش در خصوص بهینه‌سازی مصرف انرژی و امکان بررسی روشهای استفاده از انواع انرژیهای تجدیدپذیر به ویژه انرژی خورشیدی اجرا گردیده‌است.






سیستمهای فتوولتاییک

به پدیده‌ای که در اثر تابش نور بدون استفاه از مکانیزم‌های محرک، الکتریسیته تولید کند پدیده فتوولتائیک و به هر سیستمی که از این پدیده‌ها استفاده کند سیستم فتوولتائیک گویند. سیستم‌های فتوولتائیک یکی از پر مصرف‌ترین کاربرد انرژی‌های نو می‌باشند و تاکنون سیستم‌های گوناگونی با ظرفیت‌های مختلف (۵/۰ وات تا چند مگاوات) در سراسر جهان نصب و راه‌اندازی شده‌است و با توجه به قابلیت اطمینان و عملکرد این سیستم‌ها هر روزه بر تعداد متقاضیان آنها افزوده می‌شود. از سری و موازی کردن سلولهای آفتابی می‌توان به جریان و ولتاژ قابل قبولی دست یافت. در نتیجه به یک مجموعه از سلولهای سری و موازی شده پنل (Panel) فتوولتائیک می‌گویند. امروزه اینگونه سلولها عموماً از ماده سیلیسیم تهیه می‌شود و سیلیسیم مورد نیاز از شن و ماسه تهیه می‌شود که در مناطق کویری کشور، به فراوانی یافت می‌گردد. بنابراین از نظر تأمین ماده اولیه این سلولها هیچگونه کمبودی در ایران وجود ندارد. سیستمهای فتوولتائیک را می‌توان بطور کلی به دو بخش اصلی تقسیم نمود که بطور خلاصه به توضیح آنها می‌پردازیم.






۱ – صفحه‌های خورشیدی

این بخش در واقع مبدل انرژی تابشی خورشید به انرژی الکتریکی بدون واسطه مکانیکی می‌باشد. این بخش در واقع کلیه مشخصات سیستم را کنترل کرده وتوان ورودی پنلها را طبق طراحی انجام شده و نیاز مصرف کننده به بار یا باتری تزریق و کنترل می‌کند. لازم به ذکر است که در این بخش مشخصات و عناصر تشکیل دهنده با توجه به نیازهای بار الکتریکی و مصرف کننده و نیز شرایط آب و هوایی محلی تغییر می‌کند.





نیروگاه بادی

یک نیروگاه بادی یا مزرعهٔ بادی، مجموعه‌ای از چندین توربین بادی است که در یک مکان قرار گرفته‌اند. یک نیروگاه بادی بزرگ می‌تواند شامل چندصد توربین بادی باشد. چنین مجموعه‌ای می‌تواند بر روی دریا قرار گرفته باشد.

کشور ایران از لحاظ منابع مختلف انرژی یکی از غنی ترین کشورهای جهان محسوب می‌گردد، چرا که از یک سو دارای منابع گسترده سوختهای فسیلی و تجدید ناپذیر نظیر نفت و گاز است و از سوی دیگر دارای پتانسیل فراوان انرژیهای تجدید پذیر از جمله باد می‌باشد. با توسعه نگرشهای زیست محیطی و راهبردهای صرفه جویانه در بهره‌برداری از منابع انرژیهای تجدید ناپذیر، استفاده از انرژی باد در مقایسه با سایر منابع انرژی مطرح در بسیاری از کشورهای جهان رو به فزونی گذاشته است. استفاده از تکنولوژی توربینهای بادی به دلایل زیر می‌تواندیک انتخاب مناسب در مقایسه با سایر منابع انرژی تجدید پذیر باشد.







قیمت پایین توربینهای برق بادی در مقایسه با دیگر صور انرژیهای نو
کمک در جهت ایجاد اشتغال در کشور

بزرگ‌ترین نیروگاه بادی دنیا، نیروگاه بادی روسکو در تکزاس آمریکا است که توان نامی ۷۸۱٫۵ مگاوات دارد.

در سال ۲۰۰۶ برای اولین بار در اتحادیهٔ اروپا رشد تولید برق از انرژی‌های نو بیش از رشد تولید برق از منابع فسیلی بود.از سال ۱۳۷۹ تا ۱۳۸۶ شمسی، ظرفیت تولید برق بادی جهان از ۱۸۰۰۰ مگاوات به ۹۲۰۰۰ مگاوات افزایش یافته‌است. از سال ۲۰۰۰ تاکنون این صنعت سالانه ۲۵٪ رشد کرده و هر سه سال دو برابر شده‌است و این در شرایطی است که رشد اقتصاد جهانی از یک تا دو درصد در سال بیشتر نیست.






عوامل مهم در انتخاب محل استقرار توربین‌های بادی

موارد مهم جهت شناسایی یک منطقه مستعد برای نصب توربین‌های بادی عبارتند از:

استقرار ماشینهای بادی در مکان‌هایی که مقدار انرژی تولید شده جوابگوی مصرف باشد.
پرهیز از مکان‌هایی که سبب مخاطره توربین‌های بادی می‌شود. مثل اغتشاش، یخبندان، موانع، ذرات شن و نمک در هوا، نامسطح بودن و شیب زمین که سبب افزایش قیمت نگهداری توربین، کوتاهی عمر و افت انرژی تولیدی خواهد شد
اقتصادی بودن انرژی تولیدی در مقایسه با انرژی‌های دیگر.

دراحداث نیروگاه بادی پیدا کردن محل سایت عامل بسیار مهمی است تا حداکثر بهره‌برداری را از نیروی باد بدست آورد. اطلاعات اولیه برای احداث نیروگاه بادی بینالود توسط ایستگاه هواشناسی حسین‌آباد آغاز گردید و کارهای مقدماتی آن از سال ۷۴ شروع شد. اطلاعات بدست آمده از ایستگاه در اختیار مهندسین قرار داده شد و پس از مطالعات فراوان سر انجام محل فعلی برای احداث انتخاب گردید. تونل بادی که در این منطقه وجود دارد از امام تقی آغاز و تا کویر سبزوار ادامه دارد و محل احداث نیروگاه در دهانه این تونل است و بیشترین بهره‌برداری را از نیروی باد می‌کند.

نکته مهم بعدی پس از انتخاب محل نحوه چیدمان واحدها است تا بتوان حداکثر استفاده را از نیروی باد کرد. از چندین طرح ارائه شده سرانجام چیدمان ۱۰×۶ انتخاب گردید.

در فاز اول ۴۳ واحد از ۶۰ واحد با یستی به بهره‌برداری برسد. قدرت هر واحد ۶۶۰ ولت است. از ۴۳ واحد فوق ۵ واحد از خرداد ۸۳ به بهره‌برداری رسیده و مابقی در حال نصب و راه اندازی است. واحدها با مشارکت ایران و چند کشور خارجی از جمله آلمان و دانمارک به بهره‌برداری رسیده به طوری که ۶۰ درصد تولید داخل و ۴۰ درصد تولید خارج است. کل برق تولید شده توسط واحها توسط کابل به پست (۱۳۲/۲۰) برده می‌شود و توسط آن به شبکه اصلی منتقل می‌گردد.

خروجی هر واحد ۶۰۰ و توسط ترانسفورماتورهای مجزا به ۲۰۰۰۰ تبدیل می‌گردد.

در سطح سایتهای شناخته شده در سطح جهان دو سایت متمایز وجود دارد: سایت آلتامونت پاس کالیفرنیا که بیش از ۷۰۰۰ توربین دارد و حدود ۲ مگا ولت انرژی تولید می‌کند و دیگری سایت بینالود. وجه تمایز این دو سایت در این است که در تابستان بیشتر باد می‌آید و در نتیجه تولیدی این دو سایت در تابستان که پیک مصرف است پیک تولید هم است.






بخش‌بندی

یک واحد خود از ۴ قسمت اصلی تشکیل شده است:

امبیدر سیلندر (سیلندر مدنون)
برج (تهتانی وفوقانی)
نافل (ماشین فونه)
نویز کون (دماغه)

ژنراتور نیروگاههای بادی از نوع آسنکرون می‌باشند. در ژنراتور آسنکرون بر خلاف سنکرون لغزش می‌تواند بین ۳ تا ۵ درصد باشد و در کار ژنراتور اختلالی بوجود نیاورد. ولی نکته مهم در اینجا انرژی بسیار متغیر باد است که دائما در حال تغییر است و متناسب با آن دور تغییر می‌کند. لغزش مجاز این ژنراتورها ۱۰ درصد است. برای کارآیی بهتر لازم است تا ولتاژ القایی در روتور ثابت نگه داشته شود برای این کار از سه مقومت متغیر ۱ اهمی استفاده می‌شود به طوری که این مقومتها روی هر فاز قرار می‌گیرند و توسط یک مدار کنترلی بطور اتومات تغییر می‌کنند. برای انتقال انرژی باد به ژنراتور از مین گیربکس استفاده می‌گردد.







عموما توربین‌های بادی از لحاظ دور به سه دسته تقسیم می‌شوند:

دور ثابت
دور متغیر
دو دوره توربین‌های این نیروگاه از نوع دور ثابت هستند.

دور پره ۲۸ دور در دقیقه و دور ژنراتور ۱۶۰۰ دور در دقیقه است. گیربکس طوری طراحی گردیده است که ورودی آن متغیر ولی خروجی آن ثابت باشد. اگر باد از مقدار معینی بیشتر گردد تولید برق بطور اتومات قطع می‌گردد بطوری که اگر سرعت باد ۵ متر در ثانیه باشد تولید شروع می‌گردد و در ۱۶ متر بر ثانیه تولید حداکثر است و نهایتا در ۲۵ متر در ثانیه تولید بطور اتومات قطع می‌گردد تا به اجزا واحد آسیب نرسد. البته شرایط بالا با شرط ایزو می‌باشند (فشار ۱ اتمسفر و دمای ۲۵ درجه) و در جوی سایت بینالود (۱۵۵۰ متر ارتفاع از سطح دریا) فول تولید در سرعت ۱۴ متر در ثانیه بدست می‌آید.






شرایط راه اندازی و تولید

در زمان راه اندازی ژنراتور ابتدا بصورت موتور به را می‌افتد و تا زمانی که سرعت آن به سنکرون برسد ادامه دارد. در این زمان تغذیه موتور قطع می‌گردد و به صورت ژنراتور به کار خود ادامه می‌دهد.





پره‌ها

پره‌ها طوری طراحی شده‌اند که بطور اتومات تا ۹۰ درجه تغییر پیدا می‌کنند (پیچ کنترل) کلا برای توقف و ترمز واحدها دو روش وجود دارد: در نوک پره‌ها پره‌ای دیگر موجود است (پره آیرودینامیکی) که از نوک پره اصلی فاصله دارد و تغییر حالت آن موجب توقف پره‌های اصلی میگردد (ترمز دینامیکی)
پیچ کنترل

در این سیستم تمام پره تغییر وضعیت می‌دهد و نسبت به روش قبلی مدرنتر است. برای بهره بردای کامل پره طوری قرار می‌گیرد که بیشترین سطح تماس را باد داشته باشد و همچنین در مواقعی که طوفان است و یا به خاطر سرویس نبای واحد به کار خود ادامه دهد پره‌ها طوری قرار می‌گیرند که کمترین سطح تماس را باد داشته باشند.

در نیروگاههای بادی بر خلاف نیروگاه گازی انژی ورودی در اختیار ما نیست بلکه برای کنترل شرایط بایستی از وضعیت پره‌ها استفادده کنیم. اتاقک یا ژنراتور می‌تواند ۳۶۰ درجه به دور خود گردش کند و کابل ارتباط دهنده آن طوری است که می‌تواند تا ۴ دور به دور خود بپیچد و پس از آن بطور اتومات باز می‌گردد.

تمام فرمانهای اجرایی به واحد توسط واحد کنترلی کوچکی که در بالای اتاقک است انجام می‌گیرد و از سنسورهای مختلفی تشکیل شده است و پارامترهای مختلف را تحت کنترل دارند. در هنگام طوفان که سرعت باد بسار زیاد است واحد کنترل به یاو موتورها فرمان داده و آنها با چرخش ژنراتور به حول خود باعث می‌شوند تا ژنراتور در حالت پشت به باد قرار گیرد و از طوفان در امان باشد. تمام قسمتهای کنترلی به صورت اتومات انجام می‌گردد و اپراتور فقط بر کارکرد قسمتها نظارت دارد و تمام اطلاعات به طور لحظه‌ای ثبت می‌گردد و در حافظه کامپیوتر ذخیره می‌گردد.

تغییر دور ژنراتور بین ۱۵۰۰ تا ۱۶۵۰ دور است و تغییر دور پره بین بین ۲۸ تا ۳۰ دور است.
1:18 pm
نونیز و ثبات در مدیریت (۲۰۰۰–۱۹۷۸)
در سال ۱۹۷۸ جوزپ لوییس نونیز در انتخاباتی توسط اعضای باشگاه به عنوان مدیر جدید انتخاب شد. این تصمیم بسیار نزدیک و متصل به گذار اسپانیا در مسیر دموکراسی و پایان یافتن دیکتاتوری فرانکو در سال ۱۹۷۴ بود. هدف اصلی نونیز ارتقا دادن بارسا به سطح یک باشگاه جهانی از طریق ثبات بخشیدن به آن در زمین و خارج از آن بود. وی به توصیه کرایف، آکادمی جوانان بارسلونا، لا ماسیا را در ۲۰ اکتبر ۱۹۷۹ تأسیس کرد.دوره ریاست او ۲۲ سال به طول انجامید و بر بارسلونا تاثیر بسازایی گذاشت. از زمان نونیز سیاست‌های سختگیرانه‌ای برای دستمزد و نظم و انضباط به جا مانده‌است.





در ۱۶ مه ۱۹۷۹ بارسلونا با شکست ۴–۳ فورتونا دوسلدورف در مقابل بیش از ۳۰٬۰۰۰ طرفدار بارسلونایی که برای دیدن بازی به بازل سوئیس آمده بودند، توانست برای اولین بار جام در جام اروپا فتح کند. در ۱۹۸۲ مارادونا با قراردی به مبلغ ۵ میلیون پوند از بوکا جونیورز خریده شد و دهمین رکورد جهان از حیث مبلغ قرار داد رقم خورد.در پایان فصل ۱۹۸۳–۱۹۸۲ بارسلونا توانست با مربیگری منوتی، رئال مادرید را شکست دهد و قهرمان کوپا دل ری شود. حضور مارادونا در بارسا دیری نپایید و او بارسلونا را برای پیوستن به ناپولی ترک کرد. در آغاز فصل ۱۹۸۵–۱۹۸۴ تری وینابلز به عنوان مربی انتخاب شد و توانست لا لیگا را با هافبک برجستهٔ آلمانی، برند شوستر فتح کند. در فصل بعدی او تیم را به مرحله فینال جام باشگاه‌های اروپا برد که در ضربات پنالتی بارسا مغلوب استوا بخارست شد و عنوان نایب قهرمانی را کسب کرد.پس از جام جهانی فوتبال ۱۹۸۶ باشگاه گری لینکر آقای گل آن رقابت‌ها را از باشگاه اورتون خرید و با دروازه‌بان آندونی زوبیزارتا قرار دادی طولانی بست. اما تیم در حالی که شوستر در محرومیت به سر می‌برد نتوانست موفقیت‌های زیادی کسب کند. وینابلز در آغاز فصل ۱۹۸۸–۱۹۸۷ از بارسا اخراج و لوییس آراگونز جانشین او شد. تمرد بازیکنان از نونیز در رویدادی که به هسپریا موتینی شهرت دارد در همین فصل رخ داد و این فصل با پیروزی ۱–۰ در مقابل رئال سوسیداد در فینال کوپا دل ری به پایان رسید.در سال ۱۹۸۸ کرایف به عنوان سرمربی به باشگاه بازگشت و به زبان ساده‌تر یک تیم رویایی جمع کرد. در حالی که باشگاه با ستاره‌های بین‌المللی چون روماریو، رونالد کومان، میشل لادروپ و هریستو استویچکوف قرار داد داشت، او ترکیبی از بازیکنان اسپانیایی چون خوزه ماری باکرو، جوزپ گواردیولا و تکسیکی بگیریستین را به زمین می‌برد.بارسا زیر نظر یوهان کرایف توانست چهار عنوان قهرمانی لالیگا را بین سال‌های ۱۹۹۱ تا ۱۹۹۴ پی در پی کسب کند. در رقابت‌های اروپایی نیز با شکست سمپدوریا در فینال جام در جام اروپا ۱۹۸۹ و لیگ قهرمانان اروپا ۱۹۹۲ هر دو عنوان قهرمانی را به دست آورد. همچنین بارسا کوپا دل ری در سال ۱۹۹۰، سوپر جام اروپا در سال ۱۹۹۲ و سه سوپر جام اسپانیا را نیز ازآن خود کرد. یوهان کرایف با ۱۱ عنوان قهرمانی، موفق‌ترین مربی باشگاه تا به امروز بوده و با ۸ سال مربیگری پی در پی بیشترین مدت باقی‌ماندن در سمت مربیگری باشگاه را داراست.بخت یوهان کرایف در فینال دو فصل آخر مربیگریش برگشت و کسب نتایج ضعیف اسباب اخراج او توسط نونیز را فراهم کرد.بابی رابسون جایگزین کرایف شد و تنها در فصل ۱۹۹۷–۱۹۹۶ در این سمت باقی‌ماند. او رونالدو را از پی‌اس‌وی خرید و توانست سه جام کوپا دل ری، سوپر جام اسپانیا و جام در جام اروپا را برای باشگاه به ارمغان آورد. حضور رابسون تنها یک راه حل کوتاه مدت بود تا لوئیس فن خال بتواند به باشگاه بپیوندد.رونالدو نیز چون مارادونا برای مدت کوتاهی در باشگاه ماند و سپس به اینتر میلان پیوست. به هرشکل ستارگان تازه‌ای چون لوییس فیگو، پاتریک کلایورت، لوییز انریکه و ریوالدو در باشگاه ظاهر شدند و بارسا هر دو جام کوپا دل ری و لا لیگا را در سال ۱۹۹۸ بالای سر برد. در ۱۹۹۹ ریوالدو به عنوان چهارمین بازیکن بارسلونا توانست عنوان بهترین بازیکن فوتبال سال اروپا را کسب کند. علی‌رغم تمام این موفقیت‌ها داخلی، عدم پیروزی بارسا در فینال لا لیگا ۲۰۰۰ که سبب قهرمانی رئال مادرید شد، استعفای نونیز و فن خال را در پی داشت.




رفتن نونیز و آمدن لاپورتا (۲۰۱۰–۲۰۰۰)
رفتن نونیز و فن خال از باشگاه قابل مقایسه با پیوستن لوییس فیگو به رئال مادرید نبود، فیگو نه تنها کاپیتان دوم تیم بلکه به عنوان قهرمانی قابل ستایش نزد هواداران بارسا شناخته می‌شد، تاجایی که بسیاری از کاتالونیایی‌ها او را از خودشان می‌دانستند. هواداران بارسا که از تصمیم پیوستن فیگو به رقیب دیرینه خود بسیار ناراحت بودند، این ناراحتی را با استقبال خشم‌آلود خود از حضور فیگو در نیوکمپ نشان می‌دادند، حتی در اولین حضور او در نیوکمپ به سمتش یک کله خوک و شیشه پر ویسکی پرتاب کردند.در سال ۲۰۰۰ خوان گسپارت جایگزین نونیز شد و به مدت سه سال در این سمت باقی‌ماند. در این مدت باشگاه شاهد رفت‌وآمد مربیان بود. در نهایت فن خال برای بار دوم به باشگاه بازگشت ولی از آنجایی که نتیجه مثبتی حاصل نشد، فن خال و گسپارت هر دو استعفا دادند.پس از دوران ناموفق گسپارت، باشگاه با ترکیبی از مسئولین جوان به اوج بازگشت. خوان لاپورتا جایگزین گسپارت شد و فرانک ریکارد بازیکن سابق تیم ملی فوتبال هلند به عنوان مربی بارسا انتخاب شد. تاثیر بازیکنان بین‌المللی و ترکیب آن‌ها با بازیکنان اسپانیایی تیم را به سمت کسب موفقیت مجدد سوق داد. بارسا توانست در سال ۲۰۰۵–۲۰۰۴ لا لیگا و سوپر جام اسپانیا را فتح کند و قرار دادی با رونالدینیو، بازیکن سال فوتبال جهان ۲۰۰۶ ببندد.در فصل ۲۰۰۶–۲۰۰۵ بارسا مجدداً قهرمان لا لیگا و سوپر جام اسپانیا شد. در فینال لیگ قهرمانان بارسلونا در مقابل آرسنال قرار گرفت، درحالی که آرسنال تا پیش از ۱۵ دقیقه پایان بازی با ۱۰ بازیکن پیروز میدان بود، بارسا توانست نتیجه بازی را ۲–۱ به نفع خود تغییر دهد و جام را بعد از ۱۴ سال بالای سر بگیرد.در همان سال بارسلونا در جام باشگاه‌های جهان نیز شرکت کرد و در فینال با گل دقیقه ۸۲ حریف برزیلی خود، مغلوب اینترناسیونال شد.اگرچه بارسلونا فصل ۲۰۰۷–۲۰۰۶ را با قدرت شروع کرد، اما در پایان بدون کسب هیچ عنوانی فصل را به پایان رساند. بعدها اردوی پیش از فصل در ایالات متحده که منجر به مصدومیت ساموئل اتوئو و لیونل مسی شد، به عنوان دلیل عدم موفقیت باشگاه اعلام شد.در لالیگا که بارسا در بیشتر فصل‌ها در جایگاه اول قرار داشت، در سال جدید بی‌ثباتی باشگاه فرصتی برای پیشی گرفتن رئال مادرید و قهرمانی آنان شد. فصل ۲۰۰۸–۲۰۰۷ برخلاف سال‌های گذشته موفقیتی برای باشگاه به همراه نداشت و در پی آن جوزپ گواردیولا مربی تیم دوم بارسلونا در پایان فصل جایگزین ریکارد شد.بارسا در فینال کوپا دل ری ۲۰۰۹ با شکست ۴–۱ اتلتیک بیلبائو برای ۲۵امین بار قهرمان این رقابت‌ها شد. سه روز پس از آن شکست رئال مادرید در رقابت‌های لالیگا جام را برای بارسلونا در فصل ۲۰۰۹–۲۰۰۸ به ارمغان آورد. بارسا در حالی فصل را به پایان رساند که در ورزشگاه المپیک رم، منچستر یونایتد فاتح سال قبل جام باشگاه‌ها را با نتیجه ۲–۰ شکست داد و سومین عنوان قهرمانی جام باشگاه‌ها را فتح کرد. در نتیجه برای اولین بار در اسپانیا اولین سه‌گانه را به دست آورد.بارسا با شکست مجدد اتلتیک بیلبائو در فینال سوپر جام اسپانیا ۲۰۰۹ و پیروزی در مقابل شاختار دونتسک در فینال سوپر جام اروپا ۲۰۰۹ دو جام دیگر را نیز بالای سر برد.در دسامبر ۲۰۰۹، بارسا جام باشگاه‌های جهان ۲۰۰۹را نیز فتح کرد و اولین تیم تاریخ فوتبال شد که شش‌گانه جام‌ها را توانست کسب کند.همچنین بارسلونا با فتح لالیگا با ۹۰ امتیاز و فتح سوپر جام برای ۹امین بار توانست دو رکورد تازه در فوتبال اسپانیا به ثبت برساند.




رفتن لاپورتا و آمدن راسل ( تاکنون–۲۰۱۰)
بعد از کناره‌گیری لاپورتا در ژوئن ۲۰۱۰، ساندرو راسل بعد از مدتی کوتاه به عنوان مدیر جدید باشگاه انتخاب شد. رأی‌گیری برای انتخاب مدیر جدید در ۱۳ ژوئن ۲۰۱۱ بر‌گزار شد و راسل توانست با کسب ۶۱.۳۵٪ (تعداد ۵۶٬۰۸۸ رأی) کل آرای مأخوذه به ریاست باشگاه برسد.او سپس توانست داوید ویا را با ۴۰ میلیون یورو از والنسیا و خاویر ماسکرانو را با ۱۹ میلیون یورو از لیورپولبه همراه دو بازیکن دیگر در نوامبر ۲۰۱۰ به‌خدمت بگیرد. بارسلونا توانست در اولین ال کلاسیکو در فصل ۲۰۱۰-۱۱، رئال مادرید را با حساب ۵-۰ شکست دهد و هم‌چنین در آن فصل توانست برای سومین سال پیاپی با ۹۶ امتیاز فاتح لالیگا شود. در آوریل ۲۰۱۱ بارسلونا که به فینال کوپا دل ری راه یافته‌بود دراین مرحله مقابل رئال مادرید قرار گرفت و بازی را با حساب ۱-۰ در مستایا واگذار کرد.در ماه مه نیز، بارسلونا در فینال لیگ قهرمانان اروپا با شکست دادن منچستر یونایتد با حساب ۳-۱ در ورزشگاه ومبلی لندن که از یک لحاظ تکرار فینال سال ۲۰۰۹ محسوب می‌شد، برای چهارمین بار قهرمان اروپا شد.اما در فصل ۱۲-۲۰۱۱ نتوانست آنچنان انتطارات را برآورده کند و پس از واگذار کردن لالیگا به رءال مادریدسپس در نیمه نهایی لیگ قهرمانان مغلوب تیم چلسی شدو از دور مسابقات کنار رفت. آنها در این فصل تنها کوپا دل ری را با پیروزی ۰-۳ مقابل تیم اتلتیک بیلباءو بدست آوردند




هواداران باشگاه
نام مستعار طرفداران بارسلونا کولز است. گفته می‌شود ۲۵٪ از جمعیت اسپانیا طرفدار بارسلونا هستند و بعد از رئال مادرید که ۳۲٪ از اسپانیایی‌ها هوادار آن هستند، بارسا در جایگاه دوم قرار می‌گیرد. جایگاه سوم نیز به تیم والنسیا با ۵٪ حامی تعلق دارد.در اروپا بارسا اولین تیم محبوب این قاره‌است.تعداد اعضای باشگاه از فصل ۲۰۰۳–۰۴ از ۱۰۰٬۰۰۰ نفر به ۱۷۰٬۰۰۰ نفر تا سپتامبر ۲۰۰۹ افزایش قابل توجهی داشته‌است.علاوه بر عضویت، در ژوئن ۲۰۱۰، به طور رسمی ۱٬۳۳۵ نفر در نقاط مختلف جهان در انجمن هواداران بارسا ثبت نام کرده‌اند. انجمن‌های هواداران وظیفه تبلیغ بارسلونا در محل‌های مختلف را دارند و در مقابل در حین بازدید از بارسلونا خدمات مفیدی دریافت می‌کنند.همچنین بارسا هواداران بسیار برجسته‌ای تاکنون داشته که در این میان می‌توان به پاپ ژان پل دوم که عضو افتخاری باشگاه بود یا خوزه زاپاترو که نخست وزیر فعلی اسپانیا است اشاره کرد.
ال کلاسیکو
رقابت شدید میان دو تیم قوی‌تر در لیگ‌های ملی بسیار معمول است و این در مورد لا لیگا نیز صدق می‌کند، جایی که به بازی میان بارسلونا و رئال مادرید ال کلاسیکو (به اسپانیایی: El Clásico) می‌گویند. از ابتدا این دو تیم به عنوان نماینده دو منطقه و شهر رقیب، کاتالونیا و کاستیل شناخته می‌شوند. این رقابت بازتابی از تنش‌های فرهنگی و سیاسی میان دو منطقه‌است که از جنگ داخلی اسپانیا نشئت می‌گیرد.در مدت دیکتاتوری پریمو ده ریورا و بخصوص فرانسیسکو فرانکو (۱۹۳۹-۱۹۷۵) تمامی فرهنگ‌های محلی مورد سرکوب قرار گرفتند و تمام زبان‌های رایج در اسپانیا جز کاستیلایی ممنوع اعلام شدند.مردم کاتالان به یک نماد برای ابراز آزادی خواهی نیاز داشتند و بارسا تبدیل به فراتر از یک باشگاه (به کاتالان: Més que un club) برای کاتالان‌ها شد. به گفتهٔ مانوئل واسکس مونتالبان، پیوستن به بارسلونا بهترین راه برای کاتالان‌ها بود تا هویت خود را نشان دهند، این راه نسبت به پیوستن به جنبش‌های ضد فرانکو کم هزینه‌تر بود و امکان ابراز مخالفت را به آن‌ها می‌داد.از سوی دیگر رئال مادرید در بسیاری از موارد به عنوان تجسمی از تمرکز ظلم حاکمیت، رژیم فاشیستی و فراتر از آن بود. (سانتیاگو برنابئو که ورزشگاه رئال به نام اوست از افرادیست که علیه ملی گرایی فرانکو جنگید.)

به هر شکل در طول جنگ داخلی اسپانیا، اعضای هر دوتیم نظیر جوزپ سانیول و رافائل سانچز گوئرا متحمل آسیب‌هایی از سوی هواداران فرانکو شدند.

در دهه ۱۹۵۰، زمانی که بحث انتقال آلفردو دی استفانو مطرح شد، اختلاف دو باشگاه تشدید یافت. در نهایت او رئال مادرید را انتخاب کرد و در آن فصل باعث موفقیت آن‌ها نیز شد.
در دهه ۱۹۶۰ هر دو تیم در جام اروپا به مصاف با یکدیگر رفتند که رئال مادرید توسط بارسا حذف شد.همچنین در آخرین رویارویی دو تیم در سال ۲۰۰۲ که توسط رسانه‌های اسپانیا «رقابت قرن» نام گرفت، بیش از ۵۰۰ میلیون نفر شاهد دیدار دو تیم بودند.




دربی بارسلونا
رقیب منطقه‌ای بارسا، اسپانیول است. برخلاف بارسا که هیئت مدیره اولیه آن از ملیت‌های مختلف بودند. این تیم توسط علاقه‌مندان به فوتبال اسپانیا تأسیس شد و سپس از حمایت پادشاه برخوردار گشت. اسپانیول آشکارا به عنوان یک تیم ضد بارسلونایی تأسیس شد و آن‌ها همواره بارسا را به عنوان یک تیم بیگانه می‌دیدند.[۸۳] از آنجایی که مردم کاتالونیا اسپانیول را به عنوان نماینده‌ای از مادرید می‌دیدند، رقابت‌ها جدی‌تر شد.زمین اصلی باشگاه اسپانیول در منطقه اعیان نشین ساریا بود.اسپانیول به طور سنتی بخصوص در زمان حکومت فرانکو، به زعم اکثریت شهروندان بارسلونا به عنوان ترویج کننده مشروعیت حکومت شناخته می‌شد و این در تضاد کامل با روحیه انقلابی بارسلونایی‌ها بود.در ۱۹۱۸ که بحث خودمختاری مطرح شده بود اسپانیول شروع به مخالفت با آن کرد.بعدها اسپانیول در کنار فاشیست‌ها از گروه‌های حامی فالانژ که می‌خواستند به جنگ داخلی بپیوندند حمایت می‌کرد. باوجود این تفاوت‌های فکری، دربی به‌خاطر تفاوت اهداف هر دو باشگاه، بیشتر برای هواداران اسپانیول اهمیت داشته تا بارسلونا. در سال‌های اخیر رقابت میان دو باشگاه کمتر رنگ و بوی سیاسی داشته و باشگاه اسپانیول نیز نام رسمی و سرود باشگاه را از اسپانیایی به کاتالان ترجمه کرده‌است.اگرچه در تاریخ لا لیگا بیشتر دربی‌ها منطقه‌ای هستند، این رقابت نامعمول نیز کاملاً با برتری بارسلونا همراه بوده‌است. اسپانیول در تمام طول ۷۰ سال گذشته تنها سه بار بالاتر از بارسلونا قرار داشته و در مسابقات جام حذفی کاتالونیا تنها در سال ۱۹۵۷ موفق به پیروزی در برابر بارسا شده‌است. همچنین بهترین نتیجه‌ای که اسپانیول تاکنون از شهرآورد بارسلونا به دست آورده ۶–۰ در سال ۱۹۵۱ بوده‌است. اسپانیول در فصل ۲۰۰۹–۲۰۰۸ با کسب پیروزی ۲–۱ در مقابل بارسا تنها تیمی است که توانسته سه بار در یک فصل بارسلونا را در نیوکمپ شکست بدهد.




درآمد و دارایی
در ۲۰۱۰، مجله فوربز با اعلام ثروت باشگاه بارسلونا در حدود ۷۵۲ میلیون یورو، آن‌ها را در جایگاه چهارم پس از منچستر یونایتد، رئال مادرید و آرسنال به عنوان ثروتمندترین باشگاه جهان قرار داد.طبق گفته دلویت، بارسلونا با در آمد ۳۶۶ میلیون یورو در همین سال، جایگاه دوم را پس از رئال مادرید که ۴۰۱ میلیون یورو درآمد دارد به دست آورده‌است.حسابرسی‌های دلویت در ژوئیه ۲۰۱۰ نشان می‌دهد بارسلونا ۴۴۲ میلیون یورو بدهی دارد. این رقم دقیقاً ۵۸ درصد از کل دارایی‌ها بارسلونا است که فوربز آن را اعلام کرده بود. مدیر جدید باشگاه این بدهی‌ها را ناشی از مشکلات ساختاری دانسته‌است.خبرها حکایت از آن دارد که در سال جاری بارسا مبلغ ۷۹ میلیون یوروی دیگر ضرر خواهد داشت، این درحالیست که بارسلونا یکی از مدافعان عنوان قهرمانی لالیگا است.
ساعت : 1:18 pm | نویسنده : admin | مطلب قبلی | مطلب بعدی
بارسا آنلاین | next page | next page